Objectives:

- Find limits of rational functions in cases where we can't substitute
- Find limits of piecewise functions
- Define and use the Squeeze Theorem

We saw last time that if f(x) is a rational function and a is in the domain of f, then $\lim_{x\to a} f(x) = f(a)$. If a is a number not in the domain of f(x), trying to substitute leads to dividing by zero.

1. If trying to plug a into f(x) leads to " $\frac{\text{non-zero}}{0}$ ", then there is a vertical asymptote at a. This means the one-sided limits can be ∞ or $-\infty$.

Example
$$\lim_{x\to 2} \frac{x+5}{x-2}$$

If we try to substitute, we get " $\frac{7}{9}$ "

Lefthand:
$$x < 2$$
, so $\lim_{x \to 2^-} \frac{x+5}{x-2} = \frac{7}{\text{tiny negative}} = \frac{+}{-}\infty = -\infty$.
Righthand: $x > 2$ so, $\lim_{x \to 2^+} \frac{x+5}{x-2} = \frac{7}{\text{tiny positive}} = \frac{+}{+}\infty = \infty$.

Righthand:
$$x > 2$$
 so, $\lim_{x \to 2^+} \frac{x+5}{x-2} = \frac{7}{\text{tiny positive}} = \frac{+}{+}\infty = \infty$.

Since $\infty \neq -\infty$, the limit of $\frac{x+5}{x-2}$ as x goes to 2 does not exist.

Example
$$\lim_{x\to 0} \frac{x+1}{x^2}$$

Attempting to substitute gives " $\frac{1}{0}$ ".

Lefthand: "
$$\frac{1}{\text{tiny positive}}$$
" = $+\infty$.

Lefthand: "
$$\frac{1}{\text{tiny positive}}$$
" = $+\infty$.
Righthand: " $\frac{1}{\text{tiny positive}}$ " = $+\infty$.

So,
$$\lim_{x \to 0} \frac{x+1}{x^2} = \infty$$
.

2. If trying to plug a into f(x) leads to " $\frac{0}{0}$ ", the limit is indeterminate. There are a few strategies we can try:

(a) Factor and Cancel

Example
$$\lim_{x\to 2} \frac{x^2-4}{x-2} = \lim_{x\to 2} \frac{(x+2)(x-2)}{x-2} = \lim_{x\to 2} x+2 = 4$$

(b) Combine Fractions

Example
$$\lim_{x \to 2} \frac{\frac{1}{x} - \frac{1}{2}}{x - 2} = \lim_{x \to 2} \frac{\frac{2}{2x} - \frac{x}{2x}}{x - 2} = \lim_{x \to 2} \frac{\frac{2 - x}{2x}}{x - 2} = \lim_{x \to 2} \frac{-(x - 2)}{2x} \left(\frac{1}{x - 2}\right) = \lim_{x \to 2} \frac{1}{2x} = \frac{1}{4}$$

(c) Multiply by the Conjugate Multiply by the Conjugate

Example $\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} = \lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} \left(\frac{\sqrt{x} + 2}{\sqrt{x} + 2} \right) = \lim_{x \to 4} \frac{x - 4}{(x - 4)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{1}{\sqrt{x} + 2}$ $= \frac{2}{\sqrt{4} + 2}$

$$= \frac{2}{\sqrt{4} + 2}$$

Example Let's calculate a limit that can't be approximated numerically on your calculator!

$$\lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2} = \lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2} \left(\frac{\sqrt{t^2 + 9} + 3}{\sqrt{t^2 + 9} + 3} \right) = \lim_{t \to 0} \frac{(t^2 + 9) - 9}{(t^2)(\sqrt{t^2 + 9} + 3)} = \lim_{t \to 0} \frac{t^2}{(t^2)\sqrt{t^2 + 9}}$$
$$= \lim_{t \to 0} \frac{1}{\sqrt{t^2 + 9} + 3} = \frac{1}{\sqrt{9} + 3} = \frac{1}{6}$$

Piecewise Functions

Not all functions are this nice! Piecewise functions require careful thinking about limit definitions:

$$f(x) = \begin{cases} -\sqrt{9+x} & -9 < x < -5\\ 100 & x = -5\\ x+3 & -5 < x \le 0\\ x^2 & 0 < x \end{cases}$$

Example 1. $\lim_{x\to -5} f(x)$: f(-5) = 100, but this tells us nothing about the limit.

Lefthand side: Values "just less than" -5. These are located in x < -5, so $\lim_{x \to -5^-} f(x) = \lim_{x \to -5^-} -\sqrt{9+x} = -\sqrt{9-5} = -\sqrt{4} = -2$ Righthand side: Values "just more than" -5, so $\lim_{x \to -5^+} f(x) = \lim_{x \to -5^+} x + 3 = -5 + 3 = -2$ Since the one-sided limits agree, $\lim_{x \to -5} f(x) = -2$.

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} -\sqrt{9+x} = -\sqrt{9-5} = -\sqrt{4} = -2$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x + 3 = -5 + 3 = -2$$

Example 2. $\lim_{x\to 0} f(x)$:
Lefthand side: $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} x + 3 = 3$ Righthand side: $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} x^2 = 0$ One-sided limits do not agree, so $\lim_{x\to 0} f(x)$

Example 3. $\lim_{x \to -3} f(x)$: All values "near" -3 are in $-5 < x \le 0$, so $\lim_{x \to -3} f(x) = \lim_{x \to -3} x + 3 = 0$

Don't forget
$$|x| = \begin{cases} -x & x < 0 \\ x & x \ge 0 \end{cases}$$
.

Absolute value functions require just as much caution as any other piecewise function.

Example $\lim_{x\to 0} g(x)$ where $g(x) = \frac{x}{|x|}$:

To understand what's going on, we want to write this as $g(x) = \begin{cases} x/(-x) & x < 0 \\ x/x & x > 0 \end{cases} = \begin{cases} -1 & x < 0 \\ 1 & x > 0 \end{cases}$

It's worth noting that 0 is not in the domain of g(x).

LHS:
$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} -1 = -1$$

RHS:
$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} 1 = 1$$

So $\lim_{x \to a} g(x)$

D.N.E.

The Squeeze Theorem:

If $f(x) \leq g(x)$ for all x near a, then, even if f(a) > g(a), we would expect that:

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$$

From this reasonable fact, we can deduce:

The Squeeze Theorem (a.k.a. Sandwich Theorem):

for all x near a (not necessarily for x = a),

 $\lim_{x \to a} h(x) \le \lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$ then

The Squeeze Theorem is useful for finding limits of weird functions by "squeezing" them with more cooperative functions:

Example Let f(x) be a mystery function. The only thing we know about f is $3 - 2x - x^2 \le f(x) \le -2x + 3$ for all $x \ne a$. Find $\lim_{x \to 0} f(x)$.

We know that $3 - 2x - x^2 \le f(x) \le -2x + 3$ for all $x \ne a$ so we can use the squeeze theorem with $h(x) = 3 - 2x - x^2$ and g(x) = -2x + 3. The squeeze theorem tells us that

$$\lim_{x \to 0} 3 - 2x - x^2 \le \lim_{x \to 0} f(x) \le \lim_{x \to 0} -2x + 3.$$

We can compute the limits of the polynomials so we have

$$3 \le \lim_{x \to 0} f(x) \le 3$$
, so $\lim_{x \to 0} f(x) = 3$

Example Find $\lim_{t\to 0} t^2 \sin\left(\frac{1}{t}\right)$.

We might be tempted to split up the product here, but $\lim_{t\to 0} \sin\left(\frac{1}{t}\right)$ D.N.E. Instead, let's use the fact that $-1 \le \sin\left(\frac{1}{t}\right) \le 1$ to squeeze our function.

$$(-1)t^{2} \leq t^{2} \sin\left(\frac{1}{t}\right) \leq (1)t^{2}$$

$$\lim_{t \to 0} (-1)t^{2} \leq \lim_{t \to 0} t^{2} \sin\left(\frac{1}{t}\right) \leq \lim_{t \to 0} (1)t^{2}$$

$$0 \leq \lim_{t \to 0} t^{2} \sin\left(\frac{1}{t}\right) \leq 0$$

